Baseline energy calibration

with v5 geometry

P. Silva (CERN)

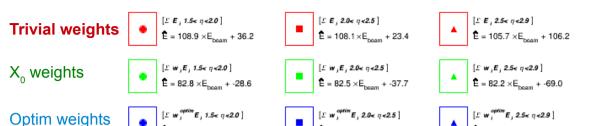
Friday, 24th October 2014

Material overburden for v5

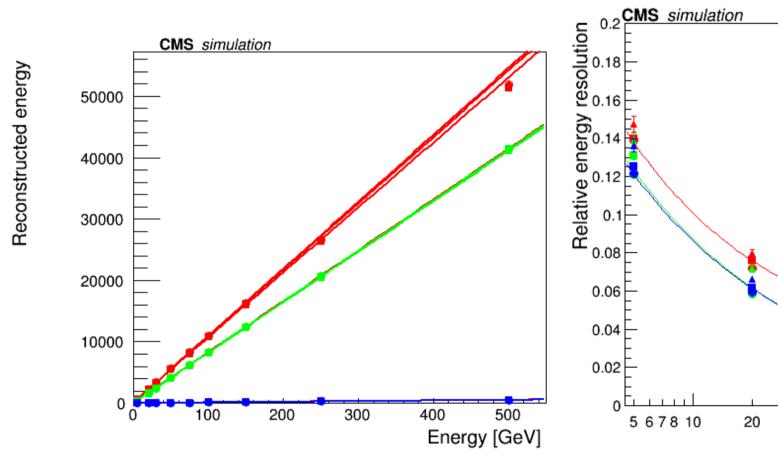
		Material overburden before sensitive detector										
Sub-detector	Layer	Al [mm]					Brass [mm]	Total X	ΣX_0	Total /	Σλ	Proposed grouping
	1	4	0.5					0.08		0.01		1 1
	2		3.5	1	1.75			0.92		0.05		
	3		6	1				0.60		0.04		
	4		1		1.75			0.57		0.02		
	5		6	1				0.60		0.04		
	6		1		1.75			0.57		0.02		2-10
	7		6	1				0.60		0.04		2-10
	8		1		1.75			0.57		0.02		
	9		6	1				0.60		0.04		
	10		1		1.75			0.57		0.02		
	11		6	1				0.60		0.04		
	12		1		2.8			0.87		0.03		
	13		6	2.1				0.79		0.05		
	14		1		2.8			0.87		0.03		
	15		6	2.1				0.79		0.05		44.00
EE	16		1		2.8			0.87		0.03		11-20
	17		6	2.1				0.79		0.05		
	18		1		2.8			0.87		0.03		
	19		6	2.1				0.79		0.05		
	20		1		2.8			0.87		0.03)
	21		6	2.1				0.79		0.05		
	22		1		4.2			1.27		0.05		
	23		6	4.4				1.20		0.06		
	24		1		4.2			1.27		0.05		
	25		6	4.4				1.20		0.06		24.20
	26		1		4.2			1.27		0.05		21-30
	27		6	4.4				1.20		0.06		
	28		1		4.2			1.27		0.05		
	29		6	4.4				1.20		0.06		
	30		1		4.2			1.27	25.7	0.05	1.31	
HEF	31		0.5			15	40	3.58		0.34		∤ HEF 1
	32-42		0.5				40	2.72	30.0	0.25	2.73	HEF 2-12
HEB	43-54						34.5	2.31	27.7	0.21	2.53	HEB 1-12
Total									83.41		6.57	

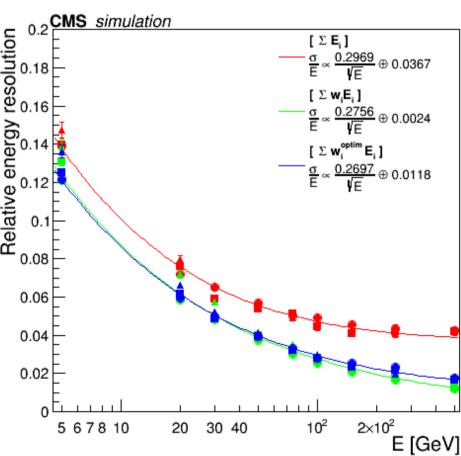
Energy weights

- Compare three different weight sets to be used as baseline energy estimation
 - Trivial weights : all weights set to 1
 - Radiation or nuclear interaction-based weights


$$\hat{E} = \sum_{i=1}^{N_{\text{layers}}} (X_{0,i} \text{ or } \lambda_i) \cdot E_i$$

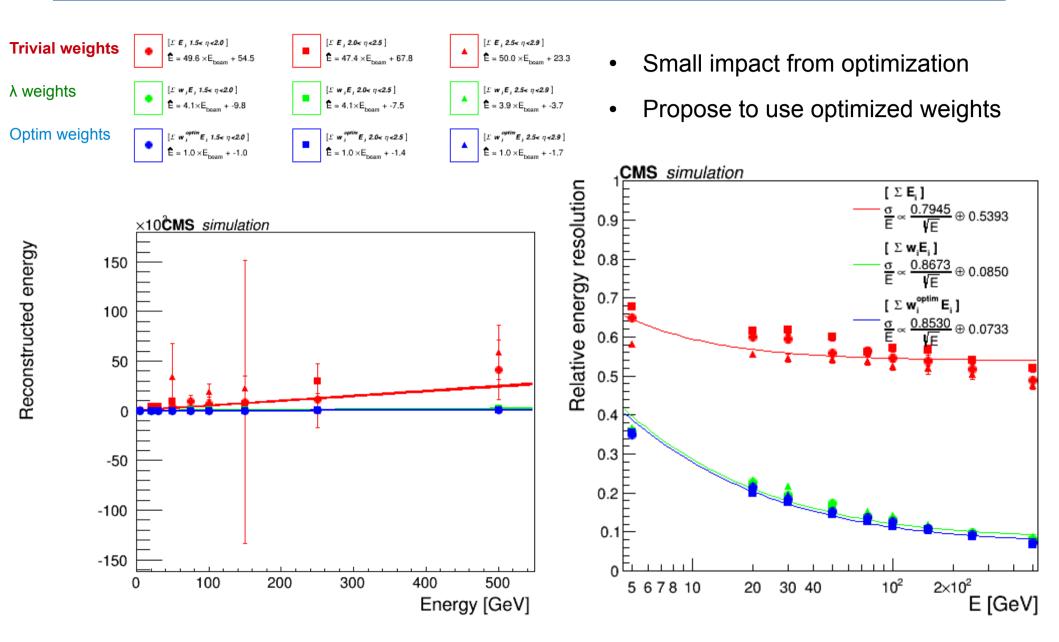
Optimized weights from linear regression using all generated events


$$\Delta^2 = \sum_{n=1}^{N_{ ext{events}}} \left[\sum_{i=1}^{N_{ ext{layers}}} w_i \cdot \frac{E_{i,n}}{E_n^{ ext{gen}}} - 1 \right]^2$$


- For each set of weights derive calibration curve separately
 - trivial calibration is expected for the optimized weight set

Ê = 1.0 ×E_{boam} + -0.4

- Minor impact from optimization
- Propose to use X₀-based weights



P. Silva

HGCAL software meeting

Pion energy calibration

Conclusions

Propose to use as a start the following weights for e.m. and hadronic reconstruction

Calibration	Wolahta	Layer									
Calibration	n Weights	1	2-11	12-21	22-30	31	32-42	43-54			
e.m.	X0-based	0.0800	0.6200	0.8100	1.1900	3.5800	2.7200	2.3100			
	Optimized	0.0483	0.0080	0.0096	0.0156	0.0754	0.0876	0.1462			
hadronic	λ-based	0.0100	0.0360	0.0420	0.0550	0.3400	0.2500	0.2100			
	Optimized	0.0179	0.0105	0.0096	0.0169	0.0464	0.0474	0.1215			

Calibration	W/W ₂₋₁₁	Layer								
Calibration		1	2-11	12-21	22-30	31	32-42	43-54		
e.m.	X0-based	0.1	1.0	1.3	1.9	5.8	4.4	3.7		
	Optimized	6.0	1.0	1.2	1.9	9.4	11.0	18.3		
hadronic	λ-based	0.3	1.0	1.2	1.5	9.4	6.9	5.8		
	Optimized	1.7	1.0	0.9	1.6	4.4	4.5	11.6		

The code used to derive these curves is described in

https://twiki.cern.ch/twiki/bin/view/CMS/HGCalUserCodeHGCanalysis#SimHit_based_calibration

- Next proposed steps
 - check these calibrations hold at RecHit and cluster level
 - Can use the SimHit code as starting point?
 - improve with compensation schemes or regression